
Blind source separation in convolutive mixtures:

a hybrid approach for colored sources

Frédéric ABRARD and Yannick DEVILLE

Laboratoire d’Acoustique Métrologie Instrumentation, Université Paul Sabatier,
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Abstract. This paper deals with the blind source separation problem in
convolutive mixtures when the sources are colored processes. In this case,
classical methods first extract the innovation processes of the sources and
then color them, which yields two successive filter approximations. On
the contrary, we propose here a new concept allowing to directly extract
estimates of the colored sources in one step.

1 Introduction

In this paper, we focus on the 2-source to 2-sensor blind source separation prob-
lem, as shown in Fig. 1. The two colored sources X1 and X2 result from two
white non-Gaussian signals P1 and P2, colored by two ARMA filters D1 and D2.
They are transferred through a mixing matrix which consists of filters Aij(z).
To simplify the notations, all the filters Di(z) and Aij(z) are supposed to be
MA. According to this configuration, we can write the two measured signals Y1
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Fig. 1. Source generation and mixing matrix.

and Y2 as:
Y1(t) = A11(t) ∗ X1(t) + A12(t) ∗ X2(t)
Y2(t) = A21(t) ∗ X1(t) + A22(t) ∗ X2(t)

(1)

where ∗ denotes the convolution operator.
Blind source separation (BSS) consists in estimating the two sources X1

and X2 from the two observed signals Y1 and Y2 without any knowledge of



the mixing filters or sources properties, except that the sources are assumed
to be independent. It is well known that classical methods such as kurtosis
maximization allow to extract the white process P1 or P2 even if the sources are
colored [1], [2], [3], [4].
This may easily be seen by deriving from the Z-transform of (1) that:

[Y (z)] = [A(z)] [D(z)] [P (z)] (2)

which becomes:

[Y (z)] = [V (z)][P (z)] (3)

We see in (3) that there is no distinction between the coloration and the prop-
agation stages. Moreover, each linear combination of several filtered i.i.d signals
makes the result closer to the Gaussian density than the signal whose normal-
ized kurtosis has the highest absolute value among all the original signals thus
filtered and combined [5], [2]. Therefore, maximizing the absolute value of the
output normalized kurtosis by means of the separation system used in [3] will
directly give the innovation process Pi whose normalized kurtosis has the highest
absolute value.
Some authors [3], [4] worked on this problem and proposed a solution which con-
sists in first estimating the white process and then building a post-processing
filter which will try to artificially color the signal in order to restore the con-
tribution of one source on one sensor. This method has the main drawback to
consist of two steps and to combine two successive approximations: The first
inverse filters and the coloration filter.

We here propose a new approach which directly estimates the different con-
tributions of the two sources on one sensor in one step.

2 Preliminary version

To extract the sources we need a separation system which will recompose the
two observations in order to cancel one source. This could be performed by the
direct separation system showed in figure 2. We use higher-order statistics in our
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Fig. 2. Preliminary separation system.

separation criterion. We choose to maximize the absolute value of the normalized



kurtosis of the output S of the separation system. This parameter is expressed
as:

|k(S)| =
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It is well known that by maximizing the expression in (4) vs the coefficients of
C1 and C2 we extract a white process Pi up to a scale factor and delay [3]. The
output is then:

S(z) = αiz
−piPi(z) (5)

with αi constant, z−pi delay operator and i source index.

Our idea came from the observation that maximizing the kurtosis leads to:

– the separation of two non-Gaussian signals, provided they are statistically
independent at order four,

– the fourth-order whiteness of the extracted signals.

We here aim at avoiding the above whitening effect in order to extract the colored
sources (or the resulting observed signals, which each consist of the contribution
of only one source on a sensor). According to this idea, we add another filter,
whose transfer function is denoted B, which will artificially whiten the output
S. The maximization of the kurtosis of the resulting whitened signal U is then
intended to restore U = P1 or U = P2, which allows S to become equal to X1

or X2, or to the observed versions of these signals. The new separation system
thus obtained is showed in Fig. 3.
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Fig. 3. Separation system including a whitening filter.

We adapt the three filters C1, C2 and B by maximizing |k(U)| vs the respective
coefficients of the different filters.
But this system is not constrained enough to guarantee that it converges to
filter values such that its output S extracts a source signal itself, or its observed
version contained in a sensor signal. We can show this by writing in Z-domain:

S(z) = (C1(z).A11(z) + C2(z).A21(z)) .X1(z)
+ (C1(z).A12(z) + C2(z).A22(z)) .X2(z)

(6)



Supposing that S(z) contains only X1(z), i.e. the maximization of the kurtosis
cancelled the contribution fromX2(z), then:

C1(z).A12(z) + C2(Z).A22(z) = 0 (7)

which means

C2(z) = −
C1(z).A12(z)

A22(z)
(8)

Combining this filter value with (6) yields:

S =

(

C1(z).(A11(z) −
A12(z).A21(z)

A22(z)
)

)

.X1(z) (9)

There is no other constraint here to fix the value of C1(z) since, in practice
the whiteness effect is achieved by the filter B(z). S is then a version of X1

transferred through an arbitrary time varying filter, which yields an uncontrolled
frequency distortion for this source. On the contrary, we want this filter to take
a specific value, such that S is equal to X1 itself or to the contribution of X1 in
one of the sensor signals. To this end, we now introduce a modified version of
this approach.

3 Proposed approach

3.1 First idea

In the particular case when the signal S only contains a contribution from one
source transferred through an unknown filter H, we can write S(t) = H(t)∗X1(t).
Combining this expression with (1) yields:

Y1(t) − S(t) = (A11(t) − H(t)) ∗ X1(t) + A12(t) ∗ X2(t) (10)

and therefore:

E
[

(Y1(t) − S(t))2
]

= E
[

((A11(t) − H(t)) ∗ X1(t))
2
]

+ E
[

(A12(t) ∗ X2(t))
2
]

(11)
The expression in (11) is minimized when H(t) = A11(t). In this case, we extract
S(t) = A11∗X1(t), which is the contribution of the source X1 measured on sensor
1. In other words, we thus get an adequately colored version of the innovation
process of this source.
We then choose to adapt the coefficients of C1 and C2 by maximizing the new
criterion defined as:

ΓC1,C2
= |k(U)| − λE

[

(Y1(t) − S(t))2
]

(12)

with λ > 0, while the whitening filter B is adapted so as to maximize |k(U)|.

This aims at combining two effects i.e:



– separating the sources by kurtosis maximization,
– extracting the signal S(t) = A11 ∗ X1(t) by minimizing E

[

(Y1(t) − S(t))2
]

.
Note that the other source may then easily be derived, as Y1(t) − S(t) =
A12(t) ∗ X2(t).

But in this intuitive approach we considered that the output S only contains
one source and that whatever happens no other source could appear, which is
not guaranteed here.
When both sources are present in S, the function E

[

(Y1(t) − S(t))2
]

is clearly
minimized vs C1 and C2 when S = Y1, which may be far from what we expected
before. We see here the danger to reach the solution S = Y1. However, in this
case the value of the kurtosis |k(B∗Y1)| is not maximum because Y1 still includes
the two sources.

Therefore, we now provide a more general theoretical analysis, which shows
in which conditions the proposed approach works.

3.2 Theoretical considerations

Considering a point defined by fixed values of (C1, C2, B), for any signal S the
condition for our cost function to be lower at that point than at the desired
convergence point may be expressed as:

|k(B ∗ S)| − λE
[

(Y1 − S)2
]

< |k(P1)| − λE
[

(A12 ∗ X2)
2
]

(13)

Then we have two different cases:

1. If E
[

(A12 ∗ X2)
2
]

− E
[

(Y1 − S)2
]

< 0 then (13) yields the following con-
straint on λ:

λ >
|k(P1)| − |k(B ∗ S)|

E [(A12 ∗ X2)2] − E [(Y1 − S)2]
(14)

The numerator |k(P1)| − |k(B ∗S)| is always positive, so the expression (14)
is true for all λ > 0.

2. If E
[

(A12 ∗ X2)
2
]

− E
[

(Y1 − S)2
]

> 0 then (13) yields the constraint:

λ <
|k(P1)| − |k(B ∗ S)|

E [(A12 ∗ X2)2] − E [(Y1 − S)2]
(15)

The condition (15) means that, for some positive values of λ, there may exist
points where the considered cost function takes higher values than at the desired
convergence point. The latter point then does not correspond to the maximum
of this function. This results from the hybrid nature of this cost function (12):
whereas its term |k(U)| alone is maximized exactly at the desired convergence
point, the additional term −λE

[

(Y1(t) − S(t))2
]

that we introduced in this func-
tion shifts the position of the global maximum of the overall resulting function.
It may be shown that the value of λ controls the magnitude of this shift, and
therefore the accuracy of the extraction of the source signals. The behavior of
the proposed separation system then depends as follows on λ:



1. For λ = 0 the maximum of the cost function coincides exactly with the
desired convergence point. However, λ = 0 is not acceptable because the
system is then underdetermined, as explained above.

2. For a very small λ, the above underdetermination disappears but the system
is still ill-conditioned.

3. For intermediate values of λ, the system becomes well-conditioned and the
maximum of its cost function is still close to the desired convergence point.
This is the range of λ to be used.

4. If λ is further increased, the position of the maximum may shift significantly
from the desired position. Especially, if λ is very high, (12) shows that the
cost function has almost the same behavior as −λE

[

(Y1(t) − S(t))2
]

, so that
its maximum almost corresponds to S(t) = Y1(t).

The proposed approach thus provides an original alternative to classical solu-
tions: whereas the latter methods perform an approximation by using an artificial
coloring step, the solution proposed in this paper avoids this approximation by
extracting the colored sources directly, but the specific cost function defined
above entails another type of approximation, i.e. in the position of the conver-
gence point.

A quantitative assessment of the above-defined ranges of values of λ and of
the accuracy of the proposed approach is provided in the next section.

4 Experimental results

We here present several results obtained with the following settings:

Two binary white processes with |k(P1)| = 1.9987 and |k(P2)| = 2.
The impulse responses of the coloration filters correspond to the following coef-
ficient arrays: D1 = [1 0.8 0.5 0.3 0.1] and D2 = [1 0.9 0.7 0.45 0.4]
Similarly, the mixing matrix is built as:

A11 = [ 0.5 -0.9 0.4] A12 = [-0.6 0.6 0.3]
A21 = [ 0.4 -0.7 0.3] A22 = [ 0.7 0.9 0.5]

(16)

The length of the separating and whitening filters is set to 9.
We adapt the coefficients with an extended version of the modified gradient
ascent algorithm described in [6] in the case of linear instantaneous mixtures.
This algorithm here reads:

Bj(n + 1) = Bj(n) + µtanh
(

sign[k(U)]∂k(U)
∂Bj

)

C
j
1(n + 1) = C

j
1(n) + µtanh

(

sign[k(U)]∂k(U)

∂C
j

1

−
∂λE[(Y1−S)2]

∂C
j

1

)

C
j
2(n + 1) = C

j
2(n) + µtanh

(

sign[k(U)]∂k(U)

∂C
j

2

−
∂λE[(Y1−S)2]

∂C
j

2

)

(17)

Denoting êl the lth estimated source and el the contribution of this source on



the first sensor, we evaluate the accuracy of the separation by the criterion:

E(êl) =
Σn|êl(n) − el(n)|2

Σn|el(n)|2
(18)

The following results are obtained after 500 iterations, where each iteration
includes an update of all three filters. The cumulants values are computed on a
300-sample data window. With several values of λ we get:

value of λ source restored accuracy E(ê1) accuracy E(ê2)
3 no 0.779 0.4118

2.5 yes (after erratic convergence) 0.2407 0.1272
2 yes 0.1587 0.0839
1 yes 0.0817 0.0432

0.85 yes 0.0824 0.0435
0.5 yes 0.093 0.0486
0.2 yes 0.1276 0.0674
.05 no, without any convergence 2.2639 1.1966

We see that, as predicted in the previous sections, with λ over 2.5 we do
not extract a source. Moreover, our experimental tests show that for all λ > 2.5
the output we get is equal to Y1. Besides, as we mentioned, when λ is below a
certain value we do not extract the right solution nor Y1: the filters then keep
on evolving but do not converge. Fig. 4 to 7 show the results obtained with
λ = 0.85.

5 Conclusions and future work

In this paper, we introduced a new approach for extracting colored sources from
their convolutive mixtures. This approach consists of a separating structure and
adaptation algorithms for its filters. This structure makes it possible to directly
extract a colored source, whereas classical methods use a two-step approach in-
cluding an artificial ”recoloring” step, which is likely to yield only an approximate
extraction of the sources. The proposed adaptation algorithms yield specific con-
vergence properties, which entail another type of (slight) approximation. In our
future investigations, we will aim at improving these convergence properties by
developing modified versions of these algorithms . Anyway, the numerical results
reported above show that this first version of our approach already succeeds in
separating the considered signals.
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Fig. 4. White processes P1 (upper plot) and P2 (lower plot).
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Fig. 5. Sensor signals Y1 (upper plot) and Y2 (lower plot).
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Fig. 6. Signals to be compared: A11 ∗ X1 (upper plot) and S (lower plot).
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